An analysis of zonal electricity markets from a long-term perspective

ESIM seminar - Leuven

Quentin Lété Joint work with Yves Smeers and Anthony Papavasiliou Louvain Institute of Data Analysis and Modeling in economics and statistics

October 11, 2021

Outline

Motivation

Capacity expansion in transmission-constrained markets

Capacity expansion with FBMC

Case study on CWE

Motivation

Capacity expansion in transmission-constrained markets

Capacity expansion with FBMC

Case study on CWE

Research questions

What are the impacts of zonal pricing on investment?

- lackbox Zonal distorts the price o cash flows to producers o investment
- In the energy transition era, this may be important

To what extend does it depend on the model of zonal constraints ?

- No unique way of organizing a zonal market
- In Europe, flow-based market coupling (FBMC)

How to model capacity expansion with FBMC ?

- ▶ Nodal and well-defined zonal: single optimization problem
- ► FBMC: no equivalence between centralized and decentralized
- Generalized Nash equilibrium

Motivation

Capacity expansion in transmission-constrained markets

Capacity expansion with FBMC

Case study on CWE

Capacity expansion in a decentralized market

"The goal of a well functioning market should be to reproduce the ideal central planning results" 1

Boiteux (1960):

- 1. Consistent with marginal pricing
- 2. The marginal cost (\neq variable cost) has to include a scarcity premium
- 3. Short-run and long-run marginal costs are equal in optimally designed systems

Does it extend to transmission-constrained markets?

¹Paul Joskow, "The new energy paradigm", 2007.

Nodal pricing: optimal long term solution

Transmission constraints

Assume that the central planner considers all transmission constraints via the DC approximation

Feasible set of nodal net injections:

$$\mathcal{R} = \left\{ r \in \mathbb{R}^{|N|} \mid \exists f \in \mathbb{R}^{|K|} : \right.$$

$$f_k = \sum_{n \in N} PTDF_{kn} \cdot r_n, k \in K$$

$$\sum_{n \in N} r_n = 0, -TC_k \le f_k \le TC_k, k \in K \right\}$$

This set completely defines the network constraints.

Nodal pricing: optimal long term solution (2)

Capacity expansion

Minimize the cost of production

s.t. generators operational constraints transmission constraints the market clears

$$\min_{x,y,s,r} \sum_{i \in I, n \in N} IC_i \cdot x_{in} + \sum_{i \in I, n \in N, t \in T} MC_i \cdot y_{int} + \sum_{n \in N, t \in T} VOLL \cdot s_{nt}$$

$$(\mu_{int}) : y_{int} \le x_{in} + X_{in}, i \in I, n \in N, t \in T$$

$$(\rho_{nt}) : r_{nt} = \sum_{i \in I} y_{int} + s_{nt} - D_{nt}, n \in N, t \in T$$

$$r_{:t} \in \mathcal{R}, t \in T$$

$$x \ge 0, y \ge 0, s \ge 0$$

Nodal pricing: Equivalence to decentralized solution

Producers:

$$\max_{x_{in}} \sum_{t \in T} \left((\rho_{nt} - MC_i) y_{int} \right)$$
$$- IC_i x_{in}$$
$$s.t. \ X_{in} + x_{in} - y_{int} \ge 0$$
$$x_{in} \ge 0, y_{int} \ge 0$$

TSO:

$$\max_{r_{nt}} - \sum_{n \in N, t \in T} r_{nt} \rho_{nt}$$
s.t. $r_{t} \in \mathcal{R}, t \in T$

Consumers:

$$\max_{s_{nt}} \sum_{t \in T} VOLL(D_{nt} - s_{nt}) -
ho_{nt}(D_{nt} - s_{nt})$$
s.t. $D_{nt} - s_{nt} \geq 0, t \in T$
 $s_{nt} \geq 0$

Auctioneer:

$$\max_{\rho_{nt}} \rho_{nt}(r_{nt} + D_{nt} - \sum_{i} y_{int} - s_{zt})$$

What about in zonal pricing?

Our claims:

- lt depends on how you define the transmission constraints
- ▶ It could hold in well defined zonal system
- ► It does not hold in FBMC
- ▶ It has a consequence in terms of efficiency

Zonal pricing: optimal long term solution

Transmission constraints?

- ► Unique price per zone
- lacktriangledown nodal dual $\xrightarrow{\mathsf{prices}}$ zonal dual o zonal primal

Feasible set of zonal net injections:

$$\mathcal{P}^{PA} = \left\{ p \in \mathbb{R}^{|Z|} \mid \exists r \in \mathbb{R}^{|N|} : p_z = \sum_{n \in N(z)} r_n \ \forall z \in Z, \right.$$
$$r \in \mathcal{R} \right\}$$

Zonal pricing: Equivalence to decentralized solution

Producers:

$$\max_{x_{iz}} \sum_{t \in T} \left((\rho_{zt} - MC_i) y_{izt} \right)$$
$$- IC_i x_{iz}$$
$$\text{s.t. } X_{iz} + x_{iz} - y_{izt} \ge 0$$
$$x_{iz} > 0, y_{izt} > 0$$

TSO:

$$\max_{\rho_{zt}} - \sum_{z \in Z, t \in T} p_{zt} \rho_{zt}$$
s.t. $p_{t} \in \mathcal{P}^{PA}, t \in T$

Consumers:

$$\max_{s_{zt}} \sum_{t \in T} VOLL(D_{zt} - s_{zt})$$
$$- \rho_{zt}(D_{zt} - s_{zt})$$
$$s.t. \ D_{zt} - s_{zt} \ge 0, t \in T$$
$$s_{zt} \ge 0$$

Auctioneer:

$$\max_{\rho_{zt}} \rho_{zt} (p_{zt} + D_{zt} - \sum_{i} y_{izt} - s_{zt})$$

Motivation

Capacity expansion in transmission-constrained markets

Capacity expansion with FBMC

Case study on CWE

FBMC: set of feasible net injections?

Difficulty: based on a set of paramters that depend on

- 1. Expected state of the grid
- 2. Installed capacity

We use a model that internalizes these dependences (Aravena et al. 2021):

$$\mathcal{PX}^{\mathsf{FBMC}}(x_{in}) = \left\{ p \in \mathbb{R}^{|\mathcal{Z}|} \middle| \exists (r, \tilde{y}) : p_z = \sum_{n \in \mathcal{N}(z)} r_n \ \forall z \in \mathcal{Z}, \right.$$

$$r \in \mathcal{R},$$

$$r_n = \tilde{y}_{int} - D_{nt} \ \forall n \in \mathcal{N},$$

$$0 \leq \tilde{y}_{int} \leq x_{in} + X_{in} \ \forall i \in I, n \in \mathcal{N} \right\}$$

Equivalence to decentralized solution is broken

Producers:

$$\max_{x_{iz}} \sum_{t \in T} \left((\rho_{zt} - MC_i) y_{izt} \right)$$
$$- IC_i x_{iz}$$
s.t.
$$X_{iz} + x_{iz} - y_{izt} \ge 0$$
$$x_{iz} \ge 0, y_{izt} \ge 0$$

TSO:

$$\begin{aligned} & \max_{p_{zt}} - \sum_{z \in \mathcal{Z}, t \in \mathcal{T}} p_{zt} \rho_{zt} \\ & \text{s.t. } p_{:t} \in \mathcal{PX}^{\mathsf{FBMC}}(\mathbf{x_{in}}), t \in \mathcal{T} \end{aligned}$$

Consumers:

$$\max_{s_{zt}} \sum_{t \in T} VOLL(D_{zt} - s_{zt})$$
$$- \rho_{zt}(D_{zt} - s_{zt})$$
s.t. $D_{zt} - s_{zt} \ge 0, t \in T$
$$s_{zt} \ge 0$$

Auctioneer:

$$\max_{\rho_{zt}} \rho_{zt} (p_{zt} + D_{zt} - \sum_{i} y_{izt} - s_{zt})$$

Investment conditions

Nodal:

$$0 \le x_{in} \perp IC_i - \sum_{t \in T} \mu_{int} \ge 0 \ \forall i \in I, n \in N$$

Zonal PA:

$$0 \le x_{iz} \perp IC_i - \sum_{t \in T} \mu_{izt} \ge 0 \ \forall i \in I, z \in Z$$

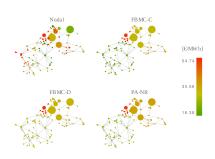
FBMC-C:

$$0 \le x_{iz} \perp IC_i - \sum_{t \in T} \mu_{izt} - \sum_{m \in \{1, \dots, M\}} U_{miz} \gamma_m \ge 0 \ \forall i \in I, z \in Z$$

FBMC-D:

$$0 \le x_{iz} \perp IC_i - \sum_{t \in \mathcal{T}} \mu_{izt} \ge 0 \ \forall i \in I, z \in Z$$

Motivation


Capacity expansion in transmission-constrained markets

Capacity expansion with FBMC

 ${\sf Case \ study \ on \ CWE}$

Results: case study on the Central Western European network

- ► 100 nodes and 20 time periods
- Based on realistic data of CWE
- Splitting based algorithm to solve the FBMC-D

Results

Policy	OC	IC	TC	Losses
	[M€/yr]			[%]
Nodal	15,855	10,432	26,287	-
FBMC-C	16,314	10,221	26,535	0.94
FBMC-D	16,368	10,700	27,068	3.0
PA	16,835	10,909	27,744	5.5

Table 1: Performance comparison of the different policies.

- Large efficiency gaps between the four designs
- Influence on decommissioning of hard coal and lignite in Germany
- ► Reallocation of technologies in different locations of the same zone cannot occur in decentralized FBMC and PA

Conclusion

Equivalence between central planner and decentralized solution is broken in FBMC.

Consequences:

- ▶ Multiple equilibria: not clear what the output will be
- ▶ Intervention from the TSO is necessary (network reserve)
- Market efficiency is degraded: Nodal > FBMC-C > FBMC-D > Zonal-PA

Thank you

Contact:

Quentin Lété, quentin.lete@uclouvain.be

https://qlete.github.io